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Multiparameter generalization of nonextensive statistical mechanics
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We show that the stochastic interpretation of Tsallis’s thermostatistics given recently by Beck@Phys. Rev.
Lett 87, 180601~2001!# leads naturally to a multiparameter generalization. The resulting class of distributions
is able to fit experimental results, which cannot be reproduced within Boltzmann’s or Tsallis’s formalism.
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Nonextensive statistical mechanics~NESM! introduced
by Tsallis @1# has gained a considerable interest in seve
fields of physics because of its capability to describe a we
of disparate phenomena~from anomalous diffusion, to turbu
lent systems, to astrophysical systems, etc.! within a single
formalism, generalization of the standard statistica
mechanical one with the addition of the single free param
~entropic index! q. Recently it has been shown how to rela
q with the internal microscopic properties of the system u
der consideration. This has been done by Wilk and Wloda
zyk @2#: they have shown that, whenq>1, the NESM ca-
nonical distribution rq(H,b0) for the system with
Hamiltonian H can be written as an average of the us
Boltzmann-Gibbs factor over the inverse temperatureb,

rq~H,b0!5E
0

`

db exp~2bH ! f q~b,b0!, ~1!

where f q(b,b0) is a weight function whose meaning is th
of a probability distribution function forb which is, there-
fore, no longer a fixed parameter; instead, the macrosc
cally visible value is just its average valueb0. Fluctuations
in b are related to coherent fluctuations existing in sm
parts of the system with respect to the whole system, du
the existence of long range correlations.

Recently Beck@3# has been able to give an interpretati
of the fluctuatingb as a function of stochastically varyin
microscopic variables. In order to recover Tsallis’s resu
Beck was forced to impose some constraints overb or,
equivalently, the microscopic dynamics of the system. In t
paper we show that, following Beck’s approach but relax
these constraints, we are able to derive an entire new cla
distributions, which reduce to Tsallis’s distribution und
suitable limits. We will show that some members of this cla
are able to reproduce experimental results that would be
side the reach of Tsallis’s formalism.

To start with, we quote the same example used in Bec
paper: let us setH5u2/2 and suppose that the generaliz
velocity u satisfies the Langevin equation

u̇52gu1sL~ t ! ~2!

*Electronic address: sattin@igi.pd.cnr.it
†Electronic address: salasnich@mi.infm.it
1063-651X/2002/65~3!/035106~4!/$20.00 65 0351
l
th

er

-
c-

l

i-

ll
to

,

s
g
of

s
t-

’s

with L(t) Gaussian white noise of unit amplitude,s strength
of the noise, andg friction coefficient. This is the Brownian
particle problem@4#. For this case, it can be shown that th
temperature 1/b is related to the microscopic parametersg,s
by

b5g/s2. ~3!

Beck shows that Tsallis’s distribution can be recovered ifb
is characterized by ax2 distribution withn degrees of free-
dom @5#

f̂ n~b,b0!5

S n

2D n/2

b0GS n

2D S b

b0
D n/221

expS 2
nb

2b0
D , ~4!

where f q(b,b0)5 f̂ n(b,b0) provided thatq5112/(n11).
Such a distribution arises ifb can be written as a sum o
normal stochastic variables,

b5(
i 51

n

Xi
2 , ~5!

with ^Xi&50 and ^Xi
2&5b0 /n, so that^b&5b0 and ^b2&

2^b2&5b0
2(2/n). Thex2 distribution is a common distribu

tion, occurring in many physical problems, and is central
the problem of estimating parameters from data@6#.

Some points are worth stressing at this stage:
~i! The macroscopic parameterb is written in terms of

other parameters more directly related to the microscop
dynamics of the system at hand, just as in Eq.~3!. We just
mention another example: in the study of fully develop
turbulence, whereu is a local velocity difference,b
5(«t)21, with « spatially averaged energy dissipation ra
andt typical time for the energy transfer.

~ii ! It is obvious that, ifb is a stochastic variable,a for-
tiori the microscopic quantitiesg,s, . . . , must also be sto-
chastic variables, therefore, characterized by their own pr
ability distribution functions~PDFs!.

~iii ! Relations of the kind~5! impose severe constraint
upon the PDFs of the microscopic variables. For example
recover Eq.~4! starting from Eq.~3! there is the trivial
©2002 The American Physical Society06-1



d

t
a
m

p

m
ro

e-
DF

ce
a
-

cit
s

a
th

to
se
s

f
W

t

-

the
nical

f
ne

Eq.

at,

ne

x-
ther
Eq.
ing

ns
n

RAPID COMMUNICATIONS

FABIO SATTIN AND LUCA SALASNICH PHYSICAL REVIEW E 65 035106~R!
choice:g x2 distributed ands2 a constant; it is difficult~and
perhaps impossible! to devise other distributions which lea
to Eq. ~4!.

The main idea of this paper is that ifb is a function of
some more fundamental stochastic control variables, then
far more logical path is the following: to guess statistic
distributions for the microscopic quantities and, from the
to work out the corresponding distribution forb. Sinceb
may have infinite functional dependences from microsco
variables, we can expect the PDF ofb to have a large range
of analytical forms, depending on a large number of para
eters@we expect as many of them as the number of mic
scopic variables that controlb5b(Y,Z, . . . )#.

Some simple rules, however, still allow to drastically r
duce the class of likely distributions. First, although the P
for each of the variablesY,Z, . . . , may bearbitrary, the
same reasoning of Eqs.~4! and~5! still holds, that is, thex2

distribution for each variable is a very convenient choi
For example, thex2 distribution can tranform into a delt
distribution, thus, allowing for well deterministic, nonsto
chastic quantities in the limitn→`. Hence, we will suppose
all the stochastic variables to bex2 distributed, possibly with
different degrees of freedom. In second place, a simpli
principle suggests that the most frequently occurring ca
should be those whereb is some simple combination of
small number of variables. Some examples are given in
above expressions@e.g., Eq.~3!#. The simplest function of all
is the sum of stochastic variablesb5Y1Z1•••. However,
with the previous choice for the PDFs ofY,Z, . . . , it is
possible to show that it is a trivial case, since it reduces
x2 distribution@5#. The next nontrivial cases, thus, are tho
involving products and ratios of one or two control variable
Y,Z, Y/Z, 1/(YZ), . . . .

Our aim now is to compute a few examples of PDFs ob
and to compare the results with the Tsallis’s formalism.
will do the computation for the case ofb ratio of two sto-
chastic variables:b5Y/Z. This is particularly convenien
since~i! it generalizes the example given by Beck@Eq. ~3!#;
~ii ! it is a particular case ofb51/(«t), whenY and either«
or t are constants.

The probability distribution function for the twox2 inde-
pendent variablesY, Z of degreen, m respectively, is given
by

f̂ n~Y,Y0! f̂ m~Z,Z0!5

S n

2Y0
D n/2S m

2Z0
D m/2

GS n

2DGS m

2 D Yn/221Zm/221

3expS 2
nY

2Y0
DexpS 2

mZ

2Z0
D . ~6!

@G is the factorial functionG(z)5*0
`tz21e2tdt.# We setb

5Y/Z, b05Y0 /Z0 and regardb andZ as independent vari
ables; after integration overZ, we get
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f̂ n,m~b,b0!5

GS n1m

2 D
GS n

2DGS m

2 D S n

mD n/2 ~b/b0!n/221

F11
n

m

b

b0
G (n1m)/2

1

b0
,

~7!

which is known asF distribution in statistics. This is the
main result of the work, since the statistical properties of
system are determined through the two-parameters cano
distribution, generalization of Eq.~1!,

rn,m~H,b0!5E
0

`

db exp~2bH ! f n,m~b,b0!. ~8!

The main feature of Eq.~7! is that the exponential term o
Eq. ~4! has disappeared, replaced by a power-law term. O
should expect this term to depress high-energy tails in
~8!. In order to have an insight on the trends of Eq.~7!, let us
consider some interesting limits. First of all, we observe th
in the limit m→`,

f̂ n,`~b,b0!5

S n

2D n/2

b0GS n

2D S b

b0
D n/221

expS 2
nb

2b0
D . ~9!

We recover thex2 distribution@Eq. ~4!# since, in the limit of
infinite degrees of freedom, the distribution forZ shrinks to a
delta distribution, so we are actually dealing with just o
stochastic variableY. It is completely new the limitn→`
~that is, we are computing the PDF of the variable 1/Z), for
which we get

f̂ `,m~b,b0!5

S m

2 D m/2

b0GS m

2 D S b0

b D m/211

expS 2
mb0

2b D . ~10!

In order to give visual insight, we plot in Fig. 1 some e
amples of these distributions. The qualitative shape is ra
similar. The occupation factors are computed through
~8!. We give explicit expressions for the cases correspond
to the two limitsn→`, m→`,

rn,`~H,b0!5
1

F11
2

n
b0HGn/2 , ~11a!

r`,m~H,b0!5
~2mb0H !m/4

2m/221GS m

2 D Km/2~A2mb0H !, ~11b!

whereK is the modified Bessel function of orderm/2. The
general case of arbitraryn,m can be explicitly written down,
but it is not revealing since it involves complex combinatio
of hypergeometric function, difficult to visualize. We plot i
6-2
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Fig. 2 the standard Boltzmann-Gibbs factor together with
curves~11!. In general, the new distributions are charact
ized by tails intermediate between Boltzmann’s and Tsall
statistics. We can obtain the probability distributionPn,m(u)
for the generalized velocityu once an explicit form forH
5H(u) is given. By assuming the usual formH5u2/2,

Pn,`~u!5Ab0

2p

GS n

2D
GS n21

2 D
1

F11
b0

n
u2Gn/2 , ~12!

P`,m~u!5
b0

(m12)/4uuum/2

2(m22)/4p1/2GS m11

2 D Km/2~@Amb0uuu!.

~13!

Notice that the functionK yields a typical exp(2cH1/2) or
exp(2c8uuu) dependence. Such a law cannot be recove
within Tsallis’s formalism, which predicts power-law depe
dences. Therefore, we take it as a signature of this new c
of functions. It may be of interest to notice that the depe
dence onuuu comes from the variable at the denominator
b, while the numerator provides a dependence onu2. In the
general case, bothuuu andu2 terms do appear.

The question arises if such distributions do exist in natu
We are interested in fluctuations of some quantity; for in
pendent fluctuations, the central limit theorem predicts
Gaussian PDF. If departures from Gaussianity are descr
in terms of Tsallis’s statistics, only PDFs with power-la
asymptotics may be included. On the basis of what was
before, we must look for PDFs with exponential tails. Act
ally, in literature several examples are presented of quant
whose PDFs are~at least on some ranges! exponential. We

FIG. 1. Probability distributionf̂ n,m(b) from Eq. ~7!, with b0

51. Solid line, f̂ 3,3; dotted line,f̂ 3,̀ ; dashed line,f̂ `,3 .
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briefly mention the numerical computation of the veloc
distribution function solution of the Enskog–Boltzman
equation for a granular gas@7#; other hints come from calcu
lations of the large-scale probability density distribution
astrophysics@8# and from the numerical simulation o
stresses in sheared granular materials@9#. A field where sev-
eral well documented examples can be found is the stud
turbulence in fluids. We refer in particular to papers@10–13#.
The quantity we are interested in here is the PDF of
velocity difference between two spatial points. It is foun
both experimentally and numerically that this quantity sho
an exponential tail. In particular, in paper@10# the departure
from a Gaussian form is interpreted within a formalism ve
close to ours, where the average~8! is done using their
equivalent of f̂ n,m(b,b0) given by a log-normal function
@see their Eqs.~3.1!–~3.4!#. The paper@12#, furthermore,
shows that the tails of this PDF can smoothly vary betwe
the Cauchy form~which is a particular kind of Tsallis’s dis
tribution! to a Gaussian form passing through the expon
tial form, by varying a few control parameters. This is stri
ingly reminiscent of varying n,m parameters in our
formalism.

In more detail, we can quote two experimental stud
from fusion plasma physics: in the first paper@14# a study of
the density fluctuations existing in a thermonuclear fus
device is presented. The time behavior of the electron den
ne close to the boundary of the device was measured w
high sampling frequency, thus, allowing one to compute
PDF of the fluctuationñe5ne2^ne&. It was found that the
curve is highly asymmetrical, with the negative wing a
proximately Gaussian, and the positive one nearly expon
tial. In Fig. 3 we fit the experimental data with both Tsallis

FIG. 2. Generalized canonical distributionsrn,m as a function of
the scaled energyb0H. Solid line, n→`,m→` @this yields the
usual Boltzmann-Gibbs~BG! case exp(2b0H)#; dotted line, Eq.
~11a! with n51, corresponding to the Tsallis distribution~with q
52); dashed line, Eq.~11b! with m51; dotted-dashed line,n
52, m51.
6-3
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and our curve, showing that the former curve cannot fit
tail of the experimental distribution. Rather closely relate
we mention a second paper, dealing with a statistical anal
of electrostatic potential fluctuations, still in the edge o
plasma@15#. A wavelet analysis of the data allowed there
compute PDFs as function of the time scale of the fluct
tions. A scaling law for PDFs was recovered by fitting the
with stretched exponentialsP(X)'exp(2buXua). The param-
eter a is a function of the time scale, varying between
~exponential distribution! and 2 ~Gaussian distribution!. In
Fig. 4 the case closest to an exponential is shown.

FIG. 3. Probability distributionP(ñe) of the electronic density

fluctuations ñe . Broken line, experimental data from Ref.@14#
~only the side of positive fluctuations is shown!; dotted line, best fit
using Tsallis’s distribution~12!; dashed line, best fit with curve~13!
andm51.
m

s
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We think we have given in this work constructive ev
dence of the existence of generalized nonextensive distr
tions. The very simple PDFs we have computed, seemin
gave us the tools to describe complicated phenomena.

A crucial point is the choice of the microscopic variable
since one could always choose varying definitions for th
so as to identify several different cases within the sa
classes of functions. Therefore, work in this direction shou
~i! either show that trivial redefinitions of variables are n
important for the final result, or~ii ! find that some sets o
variables are preferred with respect to all the others.

We gratefully acknowledge G. Antar for providing us wit
the experimental data of Fig. 3 and E. Martines for the d
used in Fig. 4.

FIG. 4. Probability distributionP(Ṽ) of the electrostatic poten

tial fluctuationsṼ. Circles, experimental data from Ref.@15#; solid
line, best fit with curve~13! andm51.
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